Анализ результатов моделирования

Цель работы — научиться выявлять степень взаимосвязи между исследуемыми показателями и закон изменения результирующих показателей под влиянием выбранных факторов.

Основные сведения

Основным аппаратом анализа результата моделирования является раздел математической статистики - корреляционно-регрессионный анализ.

Задача корреляционного анализа — выявление характера и степени взаимосвязи между показателями, являющимися случайными величинами.

Задача регрессионного анализа — выявление того, насколько изменение одной переменной (фактора) в среднем влияет на изменение другой переменной (результативного признака).

В корреляционном анализе определяется один показатель, характеризующий степень тесноты взаимосвязи показателей.

В регрессионном анализе строится модель регрессии в виде математической функции, которая показывает влияние факторов на некоторый показатель.

Парная регрессия – это уравнение связи двух переменных y и x:

$$y=f(x)$$
,

где y – зависимая переменная (результат, отклик);

x – независимая, объясняющая переменная (фактор).

Различают линейные и нелинейные регрессии.

$$b = \frac{\overline{yx} - \overline{y} \cdot \overline{x}}{\overline{x^2} - \overline{x}^2}$$
$$a = \overline{y} - b\overline{x},$$

где

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n},$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{y_1 + y_2 + \dots + y_n}{n},$$

$$\bar{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i = \frac{x_1 y_1 + x_2 y_2 + \dots + x_n y_n}{n},$$

$$\bar{x}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}.$$

Коэффициент регрессии b показывает абсолютную силу связи между вариацией x и вариацией y.

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции r_{xy} для линейной регрессии $(-1 \le r_{xy} \le 1)$:

$$r_{xy} = \frac{\overline{yx} - \overline{x} \cdot \overline{y}}{\sqrt{(\overline{x^2} - \overline{x}^2)(\overline{y^2} - \overline{y}^2)}}.$$

Теснота линейной связи между переменными может быть оценена на основании шкалы Чеддока:

Теснота связи	Значение коэффициента корреляции при		
	наличии:		
	Прямой связи	Обратной связи	
Слабая	0,1–0,3	(-0,3)- $(-0,1)$	
Умеренная	0,3–0,5	(-0,5)- $(-0,3)$	
Заметная	0,5–0,7	(-0,7)- $(-0,5)$	
Высокая	0,7–0,9	(-0,9)- $(-0,7)$	
Весьма высокая	0,9–1	(-1)-(-0,9)	

Положительное значение коэффициента корреляции говорит о положительной связи между x и y, когда с ростом одной из переменных другая тоже растет. Отрицательное значение коэффициента корреляции означает, с ростом одной из переменных другая убывает, с убыванием одной из переменной другая растет.

Если между явлениями, процессами существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

- 1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например
 - полиномы различных степеней $y_x = a + b \cdot x + c \cdot x^2$;
 - равносторонняя гипербола $y_x = a + b/x$;
 - полулогарифмическая функция $y_x = a + b \cdot \ln x$.
 - 2. Регрессии, нелинейные по оцениваемым параметрам, например
 - степенная $y_x = a \cdot x^b$;
 - показательная $y_x = a \cdot b^x$;
 - экспоненциальная $-y_x = e^{a+b\cdot x}$.

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Pавносторонняя гипербола $y_x = a + b/x$ может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины заработной товарооборота, процента прироста платы уровня кривая A.B. безработицы (например, Филлипса), непродовольственные товары от доходов или общей суммы расходов (например, кривые Э. Энгеля) и в других случаях. Гипербола приводится к

линейному уравнению простой заменой: $z = \frac{1}{x}$. Тогда y=a+bz, где коэффициенты находятся из формул:

$$b = \frac{\overline{yz} - \overline{y} \cdot \overline{z}}{\overline{z}^2 - (\overline{z})^2};$$
$$a = \overline{y} - b\overline{z}.$$

Аналогичным образом приводятся к линейному виду зависимости $y_x = a + b \cdot \ln x$, $y_x = a + b \cdot \sqrt{x}$ и другие.

Регрессия в виде *полулогарифмической* функции имеет вид: $y_x = a + b \cdot \ln x$. Для оценки параметров она приводится к линейному виду путем замены $X=\ln x$. Тогда y=a+bX, где

$$b = \frac{\overline{yX} - \overline{y} \cdot \overline{X}}{\overline{X}^2 - (\overline{X})^2},$$
$$a = \overline{y} - b\overline{X}.$$

Несколько иначе обстоит дело с регрессиями нелинейными по оцениваемым параметрам, которые делятся на два типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся).

К внутренне линейным моделям относятся, например, степенная функция — $y_x = a \cdot x^b$, показательная — $y_x = a \cdot b^x$, экспоненциальная — $\hat{y}_x = a \cdot e^{bx}$, обратная — $y_x = \frac{1}{a + b \cdot x}$.

К внутренне нелинейным моделям можно, например, отнести следующие модели: $y_x = a + b \cdot x^c$, $y_x = a \cdot \left(1 - \frac{1}{1 - x^b}\right)$.

Регрессия в виде *степенной* функции имеет вид: $y=ax^b$.

Для нахождения параметров регрессии $y=ax^b$ необходимо провести ее линеаризацию:

$$Y=A+bX$$
,

где $Y=\ln y$, $X=\ln x$, $A=\ln a$,

$$b = \frac{\overline{YX} - \overline{Y} \cdot \overline{X}}{\overline{X}^{2} - (\overline{X})^{2}},$$
$$A = \overline{Y} - b\overline{X}.$$

После потенцирования получаем:

$$y=e^A\cdot x^b$$
.

Построению уравнения *показательной* кривой $y=ab^x$ предшествует процедура линеаризации переменных:

$$\ln y = \ln a + x \ln b; \quad Y = A + Bx,$$

где

Y=lny, B=lnb, A=lna,

$$B = \frac{\overline{Yx} - \overline{Y} \cdot \overline{x}}{\overline{x^2} - (\overline{x})^2},$$

$$A = \overline{Y} - B\overline{x}.$$

Затем потенцированием находим искомое уравнение. Искомое уравнение будет

$$v=(e^A)\cdot(e^B)^x$$
.

Регрессия в виде экспоненты имеет вид: $y=ae^{bx}$

Для оценки параметров уравнение приводится к линейному виду:

$$\ln y = \ln a + bx; \quad Y = A + bx,$$

где

$$Y=\ln y, A=\ln a,$$

$$b = \frac{\overline{Yx} - \overline{Y} \cdot \overline{x}}{\overline{x^2} - (\overline{x})^2},$$

$$A = \overline{Y} - b\overline{x}.$$

Затем потенцированием находим искомое уравнение. Искомое уравнение будет

$$y=e^{A}\cdot e^{bx}$$
.

Регрессия в виде *обратной* функции имеет вид: $y_x = \frac{1}{a+b\cdot x}$. Для оценки параметров она приводится к линейному виду путем замены Y=1/y. Тогда Y=a+bx, где

$$b = \frac{\overline{Yx} - \overline{Y} \cdot \overline{x}}{\overline{x^2} - (\overline{x})^2},$$

$$a = \overline{Y} - b\overline{x}.$$

В случае нелинейной зависимости тесноту связи между величинами оценивают по величине корреляционного отношения:

$$\rho_{xy} = \sqrt{1 - \frac{\sum (y - y_x)^2}{\sum (y - \bar{y})^2}}.$$

Интервал изменения корреляционного отношения $0 \le \rho_{xy} \le 1$.

Оценку качества построенной модели дает индекс детерминации ho_{xy}^2 .

Коэффициент детерминации $R^2 = \rho_{xy}^2$ — квадрат индекса корреляции — характеризует долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака y.

$$R^{2} = 1 - \frac{\sum (y_{x} - y)^{2}}{\sum (y - \overline{y})^{2}}.$$

Чем ближе коэффициент детерминации к 1, тем выше качество уравнения регрессии, тем в большей мере оно объясняет поведение отклика.

Порядок выполнения работы.

Используя данные своего варианта, построить линейную, степенную, экспоненциальную и полулогарифмическую модели и с помощью коэффициента детерминации сравнить эти модели.

Задание.

По заданной выборке исследовать зависимость результата y от фактора x. Для этого

- 1. Создать таблицу данных.
- 2. Найти коэффициенты линейного уравнения регрессии с помощью статистических функций Excel и встроенной статистической функции **ЛИНЕЙН**. Сделать выводы
- 3. Найти коэффициенты корреляции и детерминации. Сделать выводы
- 4. Построить поле корреляции и добавить на нее линейный тренд с указанием уравнения и коэффициента детерминации
- 5. Построить регрессию в виде степенной функции, поле корреляции с добавлением степенного тренда с указанием уравнения и коэффициента детерминации.
- 6. Построить регрессию в виде полулогарифмической функции, поле корреляции с добавлением степенного тренда с указанием уравнения и коэффициента детерминации.
- 7. Построить регрессию в виде экспоненциальной функции, поле корреляции с добавлением степенного тренда с указанием уравнения и коэффициента детерминации.
- 8. Построить сравнительную таблицу и выбрать наилучшую модель.

Пример выполнения лабораторной работы.

В табл. 1. приведены данные об объеме производства y (тыс.ед.) в зависимости от численности занятых x (тыс.чел.) некоторой фирмы.

Таблица 1

	исходные данные									
	X	11	13	15	18	20	22	24	25	27
ſ	У	25	27	31	30	38	43	44	42	49

у 25 27 31 30 38 43 44 42 4 1. Лист **Линейная** оформим, как показано на рис. 1:

	Α	В	С	D	E	F	G	Н
1	Простейша	я обработка	данных		Расчеты сумм			
2		X	у		Ϋ́T	(y-y _{cp}) ²	$(y-y_{\tau})^{2}$	$(y_{\tau}-y_{cp})^2$
3	1	11	25		24,110	133,531	0,792	154,889
4	2	13	27		27,058	91,309	0,003	90,209
5	3	15	31		30,005	30,864	0,989	42,905
6	4	18	30		34,427	42,975	19,596	4,532
7	5	20	38		37,374	2,086	0,391	0,670
8	6	22	43		40,322	41,531	7,172	14,186
9	7	24	44		43,270	55,420	0,534	45,078
10	8	25	42		44,743	29,642	7,526	67,040
11	9	27	49		47,691	154,864	1,714	123,997
	среднее				Сумма			
12	значение	19,44	36,56		квадратов	582,222	38,717	543,505
								Объясненная
13						Общая	Остаточная	регрессией
14	Коэффици	енты регресс	сии					
15	a	b			Коэффи	циент дете	рминации	0,93
16	7,90	1,47			Коэфф	ициент кој	реляции	0,97
17								
18	Лин	нейн						
19	1,4738011	7,89831261						
20	0,1486756	2,99532023						
21	0,9335011	2,35181208						
22	98,264891	7						
23	543,50508	38,7171403						
24								

Рис. 1. Лист Линейная

2. Вычисление параметров регрессии с помощью статистических функций Excel:

КОРРЕЛ(массив1;массив2) вычисляет коэффициент корреляции между двумя переменными; значения первой из них приведены в диапазоне массив1, значения второй – в диапазоне массив2;

НАКЛОН(известные_значения_у;известные_значения_х) служит для определения коэффициента b;

ОТРЕЗОК(известные_значения_у;известные_значения_х) служит для определения коэффициента a.

Вводим формулы:

Ячейка	Формула	Примечание
B16	=НАКЛОН(С3:С11;В3:В11)	Коэффициент <i>b</i>
A16	=OTPE3OK(C3:C11;B3:B11)	Коэффициент <i>а</i>
H16	=КОРРЕЛ(В3:В11;С3:С11)	Коэффициент корреляции

Уравнение регрессии y=7,9+1,47x.

Вывод: Значение коэффициента b=1,47 говорит о том, что при увеличении численности занятых на 1 тыс.чел. объем продукции увеличится на 1,47 тыс.ед.

Коэффициент корреляции равен *r*=0,97

Вывод: По шкале Чеддока - связь между объемом выпуска продукции и численностью занятых прямая и весьма высокая.

Статистическая функция **ЛИНЕЙН** определяет параметры линейной регрессии. Порядок вычислений следующий:

1) выделите область пустых ячеек 5х2 (5 строк, 2 столбца) с целью вывода результатов регрессионной статистики (А19:В23);

2) в главном меню выберите Вставка/Функция;

3) в строке **Категория** (рис. 2) выберите **Статистические**, в окне **Функция** – **ЛИНЕЙН**. Щелкните **ОК**.

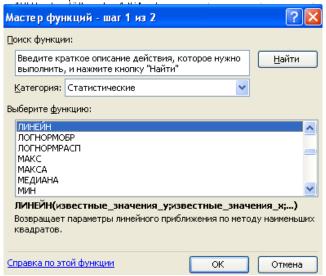


Рис. 2. Диалоговое окно «Мастер функций»

4) Заполните аргументы функции (рис. 3.):

Известные_значения_у – диапазон, содержащий данные результативного признака;

 ${\it Известные_значения_x}$ — диапазон, содержащий данные факторов независимого признака;

Kонстанта — логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Kонстанта = 1, то свободный член рассчитывается обычным образом, если Kонстанта = 0, то свободный член равен 0.

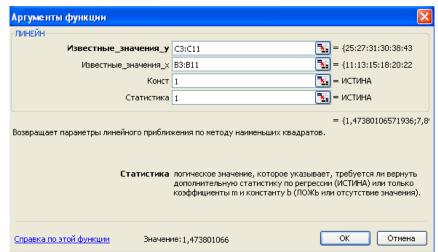


Рис. 3. Диалоговое окно ввода аргументов функции ЛИНЕЙН

5) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу **F2**, а затем — на комбинацию клавиш **CTRL**+**SHIFT**+**ENTER**. Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:

Значение коэффициента b	Значение коэффициента а
Среднеквадратическое отклонение b	Среднеквадратическое отклонение а
Коэффициент детерминации R^2	Среднеквадратическое отклонение у
<i>F</i> -статистика	Число степеней свободы
Регрессионная сумма квадратов	Остаточная сумма квадратов.

Результаты регрессионного анализа представлены на рис.4.

		-			
18	Линейн				
19	1,4738011	7,89831261			
20	0,1486756	2,99532023			
21	0,9335011	2,35181208			
22	98,264891	7			
23	543,50508	38,7171403			
14 4					

Рис. 4. Результаты регрессионного анализа

3. Для расчета сумм, которые понадобятся при определении коэффициента детерминации, введем формулы:

	11 ' ' 1	$\frac{1}{2}$		
Ячейка	Формула	Примечание		
E3	=\$A\$16+\$B\$16*B3	Расчет теоретических значений		
		результата y_m .		
		Копируем в диапазон Е3:Е11		
F3	=(C3-\$C\$12)^2	Копируем в диапазон F3:F11		
G3	$=(C3-E3)^2$	Копируем в диапазон G3:G11		
Н3	$=(E3-$C$12)^2$	Копируем в диапазон Н3:Н11		
F12	=CУММ(F3:F11)	Копируем в диапазон F12:H12		

Замечание. В приведенных формулах неоднократно используется абсолютная адресация, содержащая знак «\$». Это необходимо для того, чтобы при копировании формул данный адрес не изменялся. Для того чтобы превратить относительный адрес A16 в абсолютный (\$A\$16), достаточно нажать клавишу F4 в то время, когда курсор находится на ячейке A16.

Для вычисления коэффициента детерминации в ячейку H15 введем формулу:

=1-G12/F12.

Коэффициент детерминации равен $R^2=r^2=0.97^2=0.94$.

Вывод: Уравнением регрессии объясняется 94% дисперсии результативного признака, а на долю случайных факторов приходится 6%.

4. Построение поля корреляции

Для построения графика линейной регрессии выделим диапазон ВЗ:С11. Вызовем Мастер диаграмм. Чтобы ось отражала фактические данные, выберем тип диаграммы Точечная. После чего нажмем кнопку Готово. На построенной диаграмме выделим график функции, щелкнув по нему левой кнопкой мыши. Выделение обозначается светлыми маркерами на функции. Нажав правую кнопку мыши, выведем контекстно-зависимое меню, в котором выберем опцию Добавить линию тренда. В окне Линия тренда по вкладке Тип выберем тип функции Линейная, а во вкладке Параметры — установим флажок показывать уравнение на диаграмме и поместить на диаграмму величину достоверности аппроксимации. В результате на диаграмме появиться вид теоретической кривой — тренда и ее уравнение (рис.5).



Рис. 5. Графики фактических данных и построенной регрессии

5. Регрессия в виде степенной функции имеет вид: $y=ax^b$. Для нахождения параметров регрессии $y=ax^b$ необходимо провести ее линеаризацию:

$$Y=A+bX$$
,

где $Y=\ln y$, $X=\ln x$, $A=\ln a$.

Составляем вспомогательную таблицу для преобразованных данных (рис. 6):

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1	Простейшая обработка данных								Расчеты су	'MM		
2	_	Х	у	Υ	Х	YX	X ²		Ут	(y-y _{cp}) ²	(y-y _t) ²	(y ₁ -y _{ep}) ²
3	1	11	25	3,22	2,40	7,72	5,75		24,034	133,531	0,9324	156,780
4	2	13	27	3,30	2,56	8,45	6,58		27,221	91,309	0,0487	87,141
5	3	15	31	3,43	2,71	9,30	7,33		30,284	30,864	0,5129	39,334
6	4	18	30	3,40	2,89	9,83	8,35		34,691	42,975	22,0060	3,476
7	5	20	38	3,64	3,00	10,90	8,97		37,525	2,086	0,2260	0,939
8	6	22	43	3,76	3,09	11,63	9,55		40,287	41,531	7,3617	13,922
9	7	24	44	3,78	3,18	12,03	10,10		42,986	55,420	1,0291	41,345
10	8	25	42	3,74	3,22	12,03	10,36		44,313	29,642	5,3514	60,183
11	9	27	49	3,89	3,30	12,83	10,86		46,929	154,864	4,2888	107,610
	среднее								Сумма			
12	значение	19,44	36,56	3,57	2,93	10,52	8,65		квадратов	582,2222	41,7569	510,7302
												Объясненная
13										Общая	Остаточная	регрессией
14		оэффициенты регрессии										
15	Α	b							Коэффиг	циент дете	рминации	0,9283
16	1,39	0,75										
17	Потенци	рование										
18	а	b										
19	4,025	0,745										
20												
21		І ЕЙН										
22	0,7452067	1,39255738										
23	0,0778874	0,22910222										
24	0,9289641	0,06862084										
25	91,541681	7										
26	0,4310533	0,03296174										
	1	1			1					1	1	

Рис. 6 Лист Степенная

Вводим формулы:

Ячейка	Формула	Примечание
D3	=LN(C3)	Y=ln y
		Копируем в диапазон D3:D11
E3	=LN(B3)	$X=\ln x$
		Копируем в диапазон Е3:Е11
F3	=D3*E3	Копируем в диапазон F3:F11
G3	=E3^2	Копируем в диапазон G3:G11
D12	=CP3HAY(D3:D11)	Копируем в диапазон D12:G12

Для вычисления коэффициентов регрессии введем следующие формулы

Ячейка	Формула	Примечание
B16	=(F12-E12*D12)/(G12-E12^2)	b
A16	=D12-B16*E12	A

После потенцирования находим искомые коэффициенты регрессии:

Ячейка	Формула	Примечание
A19	=EXP(A16)	a
B19	=B16	b

Тогда уравнение регрессии будет иметь вид: $y=4,02x^{0,75}$. Для расчета сумм введем формулы:

Ячейка	Формула	Примечание
I3	=\$A\$19*B3^\$B\$19	Расчет теоретических значений
		результата y_m .
		Копируем в диапазон 13:111
J3	=(C3-\$C\$12)^2	Копируем в диапазон J3:J11
K3	=(C3-I3)^2	Копируем в диапазон К3:К11
L3	$=(I3-$C$12)^2$	Копируем в диапазон L3:L11
J12	=CУMM(J3:J11)	Копируем в диапазон J12:L12

Для вычисления коэффициента детерминации в ячейку L15 введем формулу:

=1-K12/J12.

Проведем расчеты параметров регрессии с помощью статистической функции ЛИНЕЙН.

Выделим диапазон А22:В26. введем формулу

=ЛИНЕЙН(D3:D11;E3:E11;1;1).

В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу **F2**, а затем — на комбинацию клавиш **CTRL+SHIFT+ENTER**.

Далее строим поле корреляции

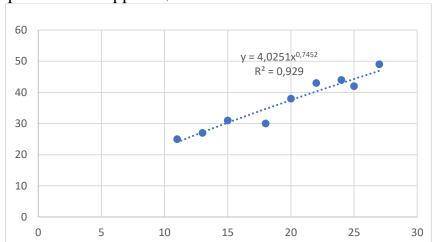


Рис. 7. Графики фактических данных и построенной регрессии

6. Построение регрессии в виде полулогарифмической функции, поле корреляции с добавлением степенного тренда с указанием уравнения и коэффициента детерминации.

Расчеты на остальных листах во многом повторяют расчеты, произведенные на листе **Степенная**, поэтому остальные листы лучше всего получить копированием листа **Степенная**.

Для этого необходимо:

- находясь на листе **Степенная**, выделить его полностью, щелкнув мышью на пересечении названий столбцов и строк; с помощью кнопки (Копировать) скопировать лист в **Буфер обмена**;
- перейти на следующий лист и выделив ячейку А1,щелкнуть мышью по кнопке (Вставить).

Получим следующие результаты:

	Trosty min esteggiomne pesysibiarbi.											
	Α	В	С	D	E	F	G	Н	1	J	K	L
1	Простейша	я обработка	данных						Расчеты сумм			
2		Х	у	у	Х	уX	X ²		Ут	(y-y _{op}) ²	(y-y _t) ²	(y ₁ -y _{op}) ²
3	1	11	25	25,00	2,40	59,95	5,75		22,769	133,531	4,9780	190,073
4	2	13	27	27,00	2,56	69,25	6,58		27,124	91,309	0,0153	88,959
5	3	15	31	31,00	2,71	83,95	7,33		30,854	30,864	0,0213	32,506
6	4	18	30	30,00	2,89	86,71	8,35		35,607	42,975	31,4391	0,900
7	5	20	38	38,00	3,00	113,84	8,97		38,354	2,086	0,1251	3,233
8	6	22	43	43,00	3,09	132,91	9,55		40,838	41,531	4,6731	18,342
9	7	24	44	44,00	3,18	139,83	10,10		43,107	55,420	0,7983	42,915
10	8	25	42	42,00	3,22	135,19	10,36		44,171	29,642	4,7120	57,991
11	9	27	49	49,00	3,30	161,50	10,86		46,177	154,864	7,9694	92,572
	среднее								Сумма			
12	значение	19,44	36,56	36,56	2,93	109,24	8,65		квадратов	582,2222	54,7315	527,4907
												Объясненная
13										Общая	Остаточная	регрессией
	Коэффици	енты регрес	сии									
15	A	В							Коэффициент детерминации			0,9060
16	-39,74	26,07										
17	Потенци	рование										
18	а	b										
19	-39,74	26,07										
20												
21		І ЕЙН										
22	26,068659	-										
23	3,1738096											
24	0,9059955	2,79620874										
25	67,464555	7										
26	527,49074	54,7314833										

Рис. 8. Лист Полулогарифмическая

Поле корреляции:

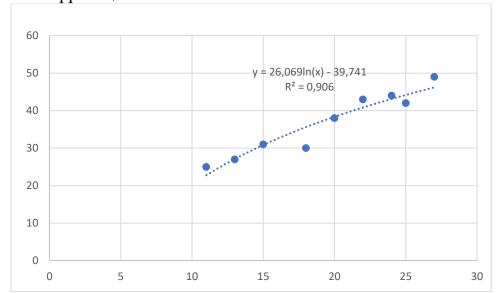


Рис. 9. Графики фактических данных и построенной регрессии

7. Построение регрессию в виде экспоненциальной функции, поле корреляции с добавлением степенного тренда с указанием уравнения и коэффициента детерминации.

	Α	В	С	D	E	F	G	Н	I	J	K	L
1	 Простейшая обработка данных 							Расчеты сумм				
2		Х	у	Υ	х	Υx	x ²		Ут	(y-y _{ep}) ²	(y-y _t) ²	$(y_{r}-y_{op})^{2}$
3	1	11	25	3,22	11,00	35,41	121,00		25,056	133,531	0,0031	132,250
4	2	13	27	3,30	13,00	42,85	169,00		27,237	91,309	0,0562	86,833
5	3	15	31	3,43	15,00	51,51	225,00		29,609	30,864	1,9356	48,258
6	4	18	30	3,40	18,00	61,22	324,00		33,559	42,975	12,6652	8,980
7	5	20	38	3,64	20,00	72,75	400,00		36,481	2,086	2,3079	0,006
8	6	22	43	3,76	22,00	82,75	484,00		39,657	41,531	11,1740	9,621
9	7	24	44	3,78	24,00	90,82	576,00		43,110	55,420	0,7917	42,964
10	8	25	42	3,74	25,00	93,44	625,00		44,948	29,642	8,6902	70,432
11	9	27	49	3,89	27,00	105,08	729,00		48,862	154,864	0,0192	151,438
	среднее								Сумма			
12	значение	19,44	36,56	3,57	19,44	70,65	405,89		квадратов	582,2222	37,6430	550,7818
												Объясненная
13										Общая	Остаточная	регрессией
	Коэффици	енты регрес	сии									
15	A	b							Коэффициент детерминации			0,9353
16	2,76	0,04										
17	Потенци	рование										
18	а	b										
19	15,83	0,0417										
20												
21		ейн										
22	0,0417435	2,76191628										
23	0,003998	0,08054714										
24	0,9396628	0,06324257										
25	109,01471	7										
26	0,4360177	0,02799736										
	М											

Рис. 10. Лист Экспоненциальная

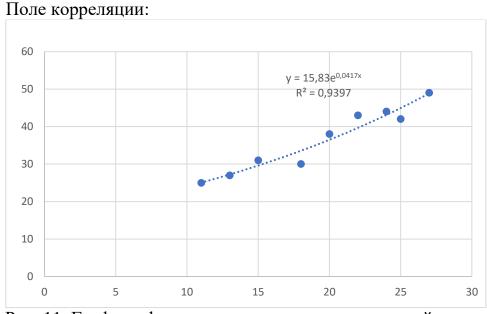


Рис. 11. Графики фактических данных и построенной регрессии

8. Выбор наилучшей модели

Выберем наилучшую модель, для чего объединим результаты построения парных регрессий в одной таблице (табл. 2).

Все уравнения регрессии достаточно хорошо описывают исходные данные. Некоторое предпочтение можно отдать экспоненциальной

функции, для которой значение коэффициента детерминации наибольшее. Таблица 2

Вид регрессии	Уравнение регрессии	Коэффициент детерминации			
Линейная	<i>y</i> =7,9+1,47 <i>x</i>	0,9335			
Степенная	$y=4,03x^{0,75}$	0,9283			
Полулогарифмическая	y=-39,74+26,07lnx	0,9060			
Экспоненциальная	$y=15,83e^{0,0417x}$	0,9353			

Варианты заданий

N	Наименование параметра (х)	Наименование основного параметра (у)
вари		
анта		
1	Грузоподъемность без выносных опор, т	Вылет наименьший, м
2	Грузоподъемность без выносных опор, т	Высота подъема со сменным рабочим оборудованием, м
3	Грузоподъемность без выносных опор, т	Скорость передвижения крана км/ч
4	Грузоподъемность без выносных опор, т	Частота вращения поворотной части крана, наибольшая, об/мин
5	Грузоподъемность без выносных опор, т	Время полного изменения вылета для кранов с гибкой подвеской стрелы, с
6	Грузоподъемность при передвижении с грузом на крюке, т	Конструктивная масса крана, т
7	Грузоподъемность при передвижении с грузом на крюке, т	Удельная масса крана, т/(т-м-м)
8	Грузоподъемность при передвижении с грузом на крюке, т	Высота подъема со сменным рабочим оборудованием, м
9	Грузоподъемность при передвижении с грузом на крюке, т	Скорость передвижения крана, км/ч
10	Грузоподъемность при передвижении с грузом на крюке, т	Высота вращения поворота части крана наибольшая, об/мин

Таблица 3 Показателя качества стреловых самоходных кранов общего назначения

110	оказателя качества стреловых сам	ΙΟΛΟ	цпыл і	крано	ь оощ	сто паз	пачст	1ИИ
п/п	Размерная группа	KΓ-16	KF-25	KT-40	KГ-63	KF-100	KF-160	KF-250
1	Грузоподъёмность, т, не менее: без	16	25	40	63	100	160	250
	выносных опор							
2	Грузоподъёмность при	16	25	40	50	70	100	125
	передвижении с грузом на крюке, т							
3	Вылет наименьший, м	4,1	4,4	5,0	5,1	6,0	6,5	7,4
4	Высота подъёма с основной стрелой, м, не менее	10	13,7	13,5	13	18	29	29
5	Высота подъёма со сменным рабочим оборудованием, м, не менее	25	36	56	61	76	100	110
6	Скорость подъёма-опускания, м/мин, не менее	7	6	5	4	3	3	2
7	Скорость передвижения крана, км/ч, не более	1,0	0,8	0,7	0,6	0,5	0,5	0,4
8	Наименьшая частота вращения поворотной части, об/мин	0,4	0,3	0,3	0,2	0,2	0,15	0,2
9	Наибольшая частота вращения поворотной части, об/мин	1,2	0,96	0,96	0,5	0,4	0,3	0,2
10	Время полного изменения вылета, с, не менее, для кранов:							
	с жесткой подвеской стрелы;	40	50	60	70	80	120	150
	с гибкой подвеской стрелы	100	150	250	200	250	600	800
11	Преодолеваемый краном уклон пути,	15	15	13	12	10	10	10
10	град, не менее	26	26.5	60	00	100	215	220
12	Конструктивная масса крана, т, не более	26	36,5	60	88	130	215	320
13	Удельная масса крана, т/ (т-м-м), не более	0,04	0,026	0,023	0,022	0,0112	0,008	0,007

Контрольные вопросы

- 1. Сущность и задачи корреляционного анализа.
- 2. Сущность и задачи регрессионного анализа.
- 3. Парная регрессия. Способы задания уравнения парной регрессии.
- 4. Линейная модель парной регрессии. Интерпретация уравнения регрессии.
- 5. Что такое корреляционное поле?
- 6. Определение тесноты связи между факторами: коэффициент корреляции и детерминации
- 7. Нелинейная регрессия. Классы нелинейных регрессий.
- 8. Методы линеаризации.
- 9. Оценка тесноты связи в нелинейной регрессии.