2.2 Анализ взаимосвязей производственно-экономических показателей предприятия

Постановка задачи:

Проведем с помощью корреляционно-регрессионного анализа моделирование взаимосвязей производственно—экономических показателей предприятия:

*x*₁ – объем работ по сметной стоимости, выполненный бригадой (командой проекта) за месяц, тыс. руб.;

*x*₂ – численность рабочих в бригаде, чел.;

*x*₃ – выработка на одного рабочего за месяц, тыс. руб.;

 x_4 – удельный вес затрат на материалы в себестоимости работ, %;

*x*₅ – средний разряд рабочих;

*x*₆ – коэффициент однородности состава бригады (команды).

 x_7 – производительность труда на предприятии, руб./чел.

*x*₈ – средняя заработная плата, руб.

*х*₉ – доля высококвалифицированных работников, %

 x_{10} – рентабельность, %

*х*₁₁ – выручка, руб

*x*₁₂ – фонд заработной платы, руб.

Определим факторный состав регрессии, проводя диагностику проблемы мультиколлинеарности:

- $x_1 = f(x_j);$
- $x_7 = f(x_j);$
- $x_{10} = f(x_j)$.

Найдем параметры уравнения многофакторной линейной регрессии. Проверим качество уравнения многофакторной линейной регрессии. *Решение:*

x_{10}	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	<i>x</i> 9
755231	4815415	3670104	290451	1145311	2238021	205343	16922	222698	323097
-148299	4431726	4205569	42279	226157	2295258	318485	28968	286709	529718
62805	5011211	4656324	27097	354887	2157195	129960	2122	350589	891381
236880	5694583	4990248	138590	704335	2155582	132843	9685	238464	790995
576453	6768274	5767941	252492	1000333	2070236	113017	21482	228077	490029
692385	7437270	6446503	246706	990767	2157388	92722	134761	215566	720204
2876791	9764217	7091113	624763	2673104	2272718	116377	1965773	165094	337017
1639463	10562959	8086628	634560	2476331	2445180	279499	583971	447657	428276

Исходные данные:

где

*x*₁₀ -чистая прибыль, руб

*х*₁- выручка от реализации, руб

*х*₂- всего затраты на реализованную продукцию, руб

х₃- текущий налог на прибыль, руб

*х*₄- прибыль от продаж, руб

х₅- основные средства, руб

*х*₆-готовая продукция и товары, шт

х₇- денежные средства, руб

x₈- прочие оборотные активы, руб
 x₉- кредиторская задолженность, руб
 Рассмотрим в качестве результата фактор x₁₀ (располагается в колонке

A)

Данные для корреляционного анализа должны располагаться в смежных диапазонах ячеек (рис. 1).

	А	В	С	D	E	F	G	Н	l l	J
1	x10	x1	x2	x3	x4	x5	x6	x7	x8	x9
2	755231	4815415	3670104	290451	1145311	2238021	205343	16922	222698	323097
3	-148299	4431726	4205569	42279	226157	2295258	318485	28968	286709	529718
4	62805	5011211	4656324	27097	354887	2157195	129960	2122	350589	891381
5	236880	5694583	4990248	138590	704335	2155582	132843	9685	238464	790995
6	576453	6768274	5767941	252492	1000333	2070236	113017	21482	228077	490029
7	692385	7437270	6446503	246706	990767	2157388	92722	134761	215566	720204
8	2876791	9764217	7091113	624763	2673104	2272718	116377	1965773	165094	337017
9	1639463	1,1E+07	8086628	634560	2476331	2445180	279499	583971	447657	428276

Рисунок 1 – Исходные данные в Excel

Построим корреляционную матрицу, используя Сервис – Анализ данных – Корреляция.

В диалогом окне Корреляция в поле Входной интервал введем диапазон ячеек, содержащих исходные данные, начиная с заголовков столбцов. Установим флажок Метки в первой строке (рис.2).

Корреляция		? >	<
Входные данные В <u>х</u> одной интервал: Группирование: <u>М</u> етки в первой строке	\$A\$1:\$J\$9 по стол <u>б</u> цам по с <u>т</u> рокам	ОК Отмена <u>С</u> правка	
Параметры вывода	\$A\$12		

Рисунок 2 – Окно Корреляция

Л	1 1			()
Матрина парных	коэффициентов	коррелянии	имеет вил	(рис. 5).
Transpinda mapribin	nespandienien	nopperniquin	IIIII VII DIIA	(piie. 2).

	x10	x1	x2	x3	x4	x5	хб	x7	x8	x9
x10	1									
x1	0,847164	1								
x2	0,715526	0,971672	1							
x3	0,931094	0,917432	0,801284	1						
x4	0,958061	0,919226	0,800134	0,993531	1					
x5	0,434755	0,501176	0,422407	0,584958	0,56827	1				
x6	-0,15593	-0,07575	-0,10887	0,034913	-0,01087	0,754575	1			
x7	0,934631	0,720802	0,60404	0,769111	0,823087	0,386924	-0,14406	1		
x8	-0,17375	0,184138	0,253649	0,063203	0,044768	0,566911	0,567364	-0,25271	1	
x9	-0,61869	-0,39462	-0,21711	-0,68103	-0,63985	-0,48272	-0,36153	-0,49809	0,180437	1

Рисунок 3 – Корреляционная матрица

У фактора x_{10} тесная связь с $x_1, x_2, x_3, x_4, x_7, x_9$.

Фактор x_4 имеет наибольшую тесноту связи с x_{10} ($rx_{10}x_4=0.958061$).

фактор x_4 мультиколлинеарен с факторами x_1 , x_2 , x_3 , x_7 . Однако и его можно оставить для дальнейшего анализа. Фактор x_2 , мультиколлинеарный с x_4 , в меньшей степени связан с x_{10} ($rx_{10}x_2=0,715526$), поэтому этот фактор потенциально исключается из модели. Исключив фактор x_2 мы устраним мультиколлинеарность между факторами x_2 и x_4 . Факторы x_1 и x_3 мультиколлинеарны между собой и фактором x_4 . Поэтому эти факторы могут быть потенциально исключены из анализа. Исключив фактор x_7 мы устраним мультиколлинеарность между факторами x_7 и x_4 .

Таким образом, далее будет строиться регрессия *x*₁₀ по факторам *x*₄ и *x*₉. Создадим новый рабочий лист (рис. 4).

	Α	В	С	
1	x10	x4	x9	
2	755231	1145311	323097	
3	-148299	226157	529718	
4	62805	354887	891381	
5	236880	704335	790995	
6	576453	1000333	490029	
7	692385	990767	720204	
8	2876791	2673104	337017	
9	1639463	2476331	428276	

Рисунок 4 – Данные для построения регрессии

В главном меню следует выберать Сервис-Анализ данных-Регрессия. Заполним диалоговое окно ввода данных и параметров вывода (рис.5):

- Входной интервал Y диапазон, содержащий данные результативного признака (A1-A9).
- Входной интервал X диапазон, содержащий данные факторов независимого признака (B1-C9).
- Метки флажок, который указывает, содержит ли первая строка названия столбцов или нет (Ставим галку).
- Константа-ноль флажок, указывающий на наличие или отсутствие свободного члена в уравнении (метку напротив параметра не ставить).
- Выходной интервал достаточно указать левую верхнюю ячейку диапазона вывода итогов регрессионного анализа.

Регрессия			?	×	
Входные данные <u>В</u> ходной интервал Y: В <u>х</u> одной интервал X:	\$A\$1:\$A\$9 \$B\$1:\$C\$9		ОК Отмена		
✓ Метки Уровень надежности:	К <u>о</u> нстанта - ноль 95 %		<u>с</u> прав	ка	
Параметры вывода		er.			
Выходной интервал: Новый рабочий <u>л</u> ист: Новая рабочая <u>к</u> нига	\$A\$12				
Остатки Ост <u>а</u> тки С <u>т</u> андартизованные остатки	График остатков				
Нормальная вероятность П График <u>н</u> ормальной вероятности					

Рисунок 5 - Параметры инструмента «Регрессия»

Результаты регрессионного анализа представлены на рис. 6.

	5		1 1			I		-		
12	вывод и	ГОГОВ								
13										
14	рессионная	статист	ика							
15	Множесте	0,95809								
16	R-квадрат	0,917936								
17	Нормиров	0,88511								
18	Стандартн	334825,5								
19	Наблюден	8								
20										
21	Дисперси	онный ана	лиз							
22		df	SS	MS	F	ачимость	F			
23	Регрессия	2	6,27E+12	3,13E+12	27,96394	0,001929				
24	Остаток	5	5,61E+11	1,12E+11						
25	Итого	7	6,83E+12							
26										
27	Коз	ффициенг	артная ог	татисти	-Значение	ижние 95%	ерхние 959	<i>іжние 95,</i> 0	рхние 95,0	%
28	Ү-пересеч	-375022	609608,7	-0,61518	0,565351	-1942071	1192028	-1942071	1192028	
29	x 4	1,033578	0,181006	5,710198	0,002301	0,568288	1,498868	0,568288	1,498868	
30	x9	-0,0445	0,772944	-0,05757	0,95632	-2,03142	1,942417	-2,03142	1,942417	

Рисунок 6 - Результаты регрессионного анализа

Оценим качество построенной регрессии, используя коэффициент детерминации R-квадрат. По данным осуществленных расчетов он равен 0,917936 значение достаточно близкое к 1, следовательно, общее качество построенного уравнения регрессии можно признать высоким.

На основе полученных данных можно записать уравнение множественной регрессии:

 $x_{10}=1,033578 \cdot x_4-0,0445 \cdot x_9-375022.$

Уравнение характеризует зависимость чистой прибыли от двух факторов: прибыли от продаж и кредиторской задолженности

Связь между чистой прибылью (x_{10}) и прибылью от продаж (x_4) показывает, что при увеличении прибыли от продаж на 1 руб, прибыль увеличится на 1,03 руб.

Связь между чистой прибылью (x_{10}) и кредиторской задолженностью (x_9) показывает, что при увеличении кредиторской задолженности на 1 руб, прибыль уменьшается на 0,0445 руб.

Найдем коэффициенты эластичности:

$$\Theta_i = b_i \cdot \frac{\bar{x}_i}{\bar{y}},\tag{1}$$

где b_i – коэффициент регрессии при факторе x_i ;

<u> </u>*y* – среднее значение результативного признака;

 \overline{x}_i – среднее значение признака x_i .

Имеем:

	x_{10}	x_4	X 9
Среднее	836463,625	1196403,125	563839,625
Эластичность		$1,033578 \cdot \frac{1196403,125}{836463,25} \approx 1,48$	$-0,0445 \cdot \frac{563839,625}{836463,25} \approx -0,03$

Таким образом, при изменении прибыли от продаж на 1%, прибыль возрастает на 1,48%; при изменении кредиторской задолженности на 1%, прибыль уменьшается на 0,03%.

Аналогично, исследуем мнофакторные регрессии:

- $x_1 = f(x_j);$ - $x_7 = f(x_i).$